Course Type	Course Code	Name of the Course		T	P	Cre dits
DP2	NMNC505	Computational Subsurface Ventilation and	0	0	3	1.5
		Environment Lab				

Course Objective

The course objective is to impart practical knowledge on the state-of-the-art techniques for monitoring the various ventilation and environmental parameters in underground mines and tunnels.

Learning Outcomes

Upon successful completion of this course, students will:

- Learn the method of measurement of various ventilation and environmental parameters in underground mines and tunnels.
- Learn the computer simulation of the incompressible flow ventilation network.

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome		
1			Students will learn the constructional features of anemometer and pitot tube, and the methods of measurement of air velocity using them.		
2	Plotting of fan characteristic curves	3	Students will learn the plotting of fan characteristic curves of single fan, and combination of fans in series and parallel.		
3	Computation of psychrometric properties of underground air	3	Students will learn computation of the resultant thermodynamic properties of the air.		
4	Determination of thermal properties of rocks	3	Students will learn the advanced method of determination of thermal conductivity thermal diffusivity and specific heat of rock		
5	of coal using Gas Chromatograph.		Students will learn the functions of important components of Gas Chromatograph (GC) and also method for analysis of gas evolution characteristics of coal using GC.		
	Determination of desorbable gas content of coal.	3	Students will learn the methods of desorbed gas, lost gas, and residual gas of the coal.		
7	Determination of spontaneous combustion susceptibility of coal by R-70 apparatus	3	Students will learn the constructional features of R-70 apparatus and the procedure of for prediction of spontaneous combustion susceptibility of coal using the advanced apparatus.		
8	Determination of wet oxidation potential of coal samples.	3	Students will learn the constructional features of wet oxidation potential apparatus and the comparison of spontaneous combustion susceptibility of different coal samples.		
9	Determination of dust concentration using dust samplers.	3	Students will learn the constructional features and operational procedure of advanced dust Samplers.		
10	Determination of noise level using Noise Level Meter.	3	Students will learn the constructional features of Noise Level Meter and method of determination of noise level.		

11	Determination of illumination level in underground using Lux meter.	3	Students will learn the constructional features of Lux meter and method of determination of illumination level using Lux meter.
12	12 Ventilation simulation of underground workings		The students will learn simulation of the incompressible flow ventilation network using Ventsim software.
13	Mini Project	3	
	Practice & Review	3	
	Total	42	

Text Books:

1. Subsurface Ventilation and Environmental Engineering by M. J. McPherson, 2012

Reference Books:

- 1. Mine Ventilation and Air Conditioning: H. L. Hartman, Jan Mutmansky and Y. J. Wang
- 2. Mine Environmental Engineering, Vol. 1 & Vol. 2: Mritunjoy Sengupta
- 3. Environmental Engineering in Mines: V. S. Vutkuri and R. D. Lama
- 4. Mine Ventilation : S. P. Banerjee
- 5. Mine Environment and Ventilation: Prof. G. B. Mishra
- 6. Advanced mine ventilation: Pramod Thakur
- 7. Prevention and combating mine fires: S.C. Banerjee